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Tidal conversion at a very steep ridge
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We obtain an analytic solution for the generation of internal gravity waves by tidal
flow past a vertical barrier of height b in a uniformly stratified ocean of depth h>b

and buoyancy frequency N . The radiated power (watts per metre of barrier) is

1
4
πρ0b

2U 2N
√

1 − (f/ω)2M(b/h),

where ρ0 is the mean density of seawater, U cos(ωt) the tidal velocity, and f the
Coriolis frequency. The function M(b/h) increases monotonically with M(0) = 1,
M(0.92) = 2 and M(1) = ∞. As b/h → 1, M diverges logarithmically and consequently
the radiated power grows as ln[(h − b)/b]. We also calculate the conversion in a
realistically stratified ocean with strongly non-uniform buoyancy frequency, N (z). A
rough approximation to the radiated power in this case is

1
4
πρ0b

2U 2N (b)
√

1 − (f/ω)2M(B/π),

where N (b) is the buoyancy frequency at the tip of the ridge and B is the height of
the ridge in WKB coordinates. (The WKB coordinate is normalized so that the total
depth of the ocean is π.) The approximation above is an over-estimate of the actual
radiation by as much as 20% when B/π ≈ 0.8. But the formula correctly indicates the
strong dependence of conversion on stratification through the factor N (b).

1. Introduction
In the deep ocean, tidal velocities of 1 or 2 cm s−1 are more rapid than most other

abyssal flows. The interaction of these tides with submarine topography results in the
radiation of internal gravity waves into the interior. These disturbances, known as
the ‘internal tide’ (Wunsch 1975), are a source of the energy required to overturn and
mix the stably stratified abyss (Munk & Wunsch 1998; Ledwell et al. 2000).

The main theoretical approach to estimating the rate of tidal conversion (expressed
in watts of radiated power) has been the weak topography approximation (WTA),
developed first by Bell (1975a, b). Bell assumes that the buoyancy frequency is uniform
and that the ocean is vertically unbounded. These two restrictions are not essential to
Bell’s approach: instead the crucial ingredients in the WTA are the assumptions that
topographic slopes are small and that the height of the topography is much less than
the depth of the ocean. In this case the bottom boundary condition can be applied
approximately at a flat surface, say z = 0, rather than at the actual bumpy bottom.
This simplification allows the linear superposition of different topographic sinusoids.
In other words, Fourier analysis is applicable and the conversion rate is obtained



176 S. G. Llewellyn Smith and W. R. Young

0 2 4 6 8 10 12
0

1

2

3

x

Figure 1. The idealized ridge is the heavy vertical line segment at x = 0; the ridge height is
b/h =0.8. This illustration uses the analytic solution in (4.17) with an unrealistically large
value α = 0.1 in order to clearly display the distortion of the isopycnal surfaces.

in terms of the topographic spectral density. St. Laurent & Garrett (2002) used this
approach to estimate the tidal conversion occurring at the East Pacific Rise and at
the mid-Atlantic Ridge. Llewellyn Smith & Young (2002) made a similar estimate
of the tidal conversions produced by the global inventory of 1.4 million seamounts.
In both of these applications, simple estimates indicate that the WTA is likely to be
valid. Indeed, the results of Balmforth, Ierley & Young (2002) encourage the view
that the WTA is accurate over the whole subcritical range in which the ray slope is
less (but not much less) than the topographic slopes.

Subsequent developments of the WTA have included finite depth effects and non-
uniform buoyancy frequency (Llewellyn Smith & Young 2002; Khatiwala 2003).
Analytic (Baines 1973, 1982; Balmforth et al. 2002) and numerical (Holloway &
Merrifield 1999; Li 2003; Khatiwala 2003) studies have lifted the weak-topography
restriction. Nevertheless published analytic results are limited to the subcritical regime
in which the topographic slope is less than the ray slope of the internal tide.

St. Laurent et al. (2003) have taken a fresh approach by considering very steep
submarine topography, idealized as a ‘knife-edge’ obstruction. Tidal conversion by a
knife-edge is a two-dimensional, (x, z), problem in which the ocean surface is at z = h,
while the bottom is the set

B ≡ {x = 0, 0 < z < b}
⋃

{−∞ < x < ∞, z = 0}. (1.1)

Since h > b the gap above the crest of this idealized ridge has height h − b (see
figure 1). This knife-edge profile is the antithesis of the gently sloping topographies
considered by the WTA. Thus, although this is a considerable idealization, a close
examination of the knife-edge ridge is perhaps the best hope for understanding tidal
conversion at strongly supercritical topography.

The knife-edge geometry has been previously examined in the context of internal
wave scattering (rather than generation) by Larsen (1969) and by Robinson (1969).
Our results in this paper rely heavily on Robinson’s formulation. Robinson obtained
an analytic expression for the Green’s function, or ‘vortex solution’, of the internal
gravity wave equation with uniform buoyancy frequency, N . We extend Robinson’s
results slightly by using the WKB approximation to obtain the Green’s function
with non-uniform buoyancy frequency, N (z). This Green’s function represents waves
propagating away from a point source in an ocean of finite depth h and with
realistically non-uniform N (z). By superposing these singular solutions with a weight
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function one can represent the effects of the knife-edge ridge and so transform either
scattering or generation problems into an integral equation. The solution of this
integral equation is the weight function. In the case of uniform stratification the
integral equation can be transformed into a well-known form, familiar from aerofoil
theory, and thus solved exactly. All of this was done by Robinson (1969) for the
scattering problem, and in this work we have adapted Robinson’s results to the
generation problem. With these techniques we can go beyond the numerical approach
of St. Laurent et al. (2003) by obtaining analytic expressions for the conversion rate at
all values of the non-dimensional parameter b/h. Additionally, by numerically solving
the integral equation, we can treat realistically non-uniform buoyancy frequency which
varies by a factor of fifty between the abyss and the thermocline.

2. Formulation
2.1. Governing equations

We idealize the ocean as a rotating, inviscid fluid layer in which the tide sloshes
to-and-fro in the x-direction; z denotes the vertical. The barotropic tide is modelled
as the periodically reversing, spatially uniform flow:

U = U cos(ωt)x̂. (2.1)

Conversion to internal gravity waves occurs because this tide flows over the knife-edge
ridge. The density is written as

ρ = ρ0

[
1 − g−1

∫ z

0

N2(z′) dz′ − g−1b

]
, (2.2)

where ρ0 is the mean density of seawater, N (z) is the buoyancy frequency and
b(x, z, t) is the disturbance. Because the topography is independent of y, so too is the
disturbance created by tidal action. The governing equations for the induced velocity
(u, v, w), rescaled pressure p and buoyancy b, are

ut − f v + px = 0, vt + f u = 0,

pz = b, bt + N2w = 0, ux + wz = 0.

}
(2.3)

In these equations f is the Coriolis frequency.
The velocity in the (x, z)-plane can be represented using a streamfunction ψ(x, z, t):

(u, w) = (−ψz, ψx). The problem then reduces to solving the internal gravity wave
equation,

ψzztt + f 2ψzz + N 2ψxx = 0. (2.4)

The bottom boundary condition is

ψ(x ∈ B) = Uz cos(ωt), (2.5)

where B is the set in (1.1). The condition in (2.5) ensures that the total streamfunction,
−Uz cos(ωt) + ψ , vanishes on B.

Replacing a ridge of thickness ∼ 100 km by a knife-edge barrier is a considerable
idealization. However this simplification is probably justified provided that the slope
of the ridge is much greater than the slope of the internal tidal beams. Equivalently,
one requires that the beams generated at the top of the ridge reflect from the
ocean floor, rather than the flanks of the ridge. Rough numerical estimates indicate
that the Hawaiian Ridge satisfies these conditions. As an illustration, see figure 8 of
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Figure 2. The energy flux J enters the control volume ABCDEFG through the ridge GAB .
The energy leaves through EF and DC. The conversion C in (2.12) is obtained by integrating
J · x̂ along the segment AB , and multiplying by 2 to account for the flux through GA.

Merrifield & Holloway (2002), which shows a simulation of Hawaiian tidal conversion:
the emitted internal disturbances do not subsequently interact with the flanks of the
ridge.

The hydrostatic approximation is valid provided that ω/N 	 1 and linearization is
valid provided that the tidal excursion (about 100 m) is much less than the width of the
topography. For further discussion of linearization see Robinson (1969), Balmforth
et al. (2002), St. Laurent & Garrett (2002), Llewellyn Smith & Young (2002), and
§ 4.3.

2.2. The steady-state wave field

We consider the steady-state wave conversion by looking for time-periodic solutions
with the tidal frequency: we introduce ϕ = ϕr + iϕi , where

ψ = URe{e−iωtϕ} = U (ϕr cos ωt + ϕi sin ωt). (2.6)

The function ϕ satisfies the hyperbolic equation

N2ϕxx = (ω2 − f 2)ϕzz, ϕ(x ∈ B) = z, ϕ(x, h) = 0. (2.7)

The mathematical problem is completed by insisting that the energy flux is away from
the knife. This radiation condition ensures that ϕ has both a real and an imaginary
part.

2.3. Energy flux and conversion

The main quantity of interest is the conversion rate of barotropic tidal energy into
internal gravity waves. To calculate the conversion rate we begin with the energy
equation obtained from (2.3):

1
2
(u2 + v2 + N−2b2)t + ψxpz − ψzpx = 0. (2.8)

For the periodic flow, the average of (2.8) over the tidal cycle implies that

∇ · J = 0, (2.9)

where J is the phase-average of the energy flux (ψpz, −ψpx); using (2.6) this phase-
averaged flux can be written as

J =
iU 2ρ0

4ω
[N2(ϕϕ∗

x − ϕ∗ϕx), −(ω2 − f 2)(ϕϕ∗
z − ϕ∗ϕz)]. (2.10)

The easiest way to calculate the conversion is to observe that on the segment AB

in figure 2, where x = 0+ and ϕ = ϕ∗ = z, the flux of energy into the fluid is

J · x̂ =
U 2ρ0

2ω
N2zϕix(0

+, z). (2.11)



Tidal conversion at a very steep ridge 179

We are considering x =0+ so on the left-hand side of (2.11) x̂ is the inward normal.
The total conversion is then

C =
U 2ρ0

ω

∫ b

0

N2(z)zϕix(0
+, z) dz. (2.12)

There is a factor of 2 included in (2.12) to account for the flux of energy through
x = 0−. To summarize: all that is needed to calculate the conversion is the normal
derivative ϕix(0

±, z).

3. The Green’s function and the integral equation
We solve (2.7) using the Green’s function method developed by Robinson (1969) to

study scattering of internal gravity waves from a knife-edge barrier. The biographical
article by Fowkes & Silberstein (1995) has some interesting comments on the history
of this problem and the confusion surrounding the radiation condition.

3.1. Vertical normal modes and WKB

We use the vertical normal modes of the stratification N (z) which are defined by the
eigenproblem

d2an

dz2
+ c−2

n N2an = 0, an(0) = an(h) = 0. (3.1)

The eigenvalue cn is the phase speed of mode n and λn ≡ cn/f is the radius of
deformation. We take an to be dimensionless. The orthogonality condition is∫ h

0

an(z)am(z)N2(z) dz = �nδmn, (3.2)

where �n is the normalization constant of mode n.
We develop the WKB approximation by first introducing the vertically averaged

buoyancy frequency and the non-dimensional buoyancy frequency:

N̄ ≡ 1

h

∫ h

0

N (z′) dz′, N(z) ≡ N (z)/N̄. (3.3)

The WKB stretched coordinate is

Z ≡ π

h

∫ z

0

N(z′) dz′, (3.4)

where 0 <Z < π. With this notation the WKB approximation to the eigenfunctions is

an(z) ≈ sin(nZ)√
N

. (3.5)

We also find that cn ≈ hN̄/nπ and �n ≈ 1
2
N̄

2
h.

3.2. The Green’s function

The main tool used in this work is the Green’s function G(x, z, z′) defined by

N 2Gxx − (ω2 − f 2)Gzz = G0δ(x)δ(z − z′), (3.6)

with the boundary conditions

G(x, 0, z′) = G(x, h, z′) = 0. (3.7)
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Figure 3. The imaginary part of GWKB(x − x ′, z, z′) in (3.13). The source is at (x ′, z′) and the
stratification is uniform (N = N′ = 1). This figure corrects an inconsequential (but confusing)
error in Robinson’s figure 1.

The definition of G is completed by requiring that there is only outgoing radiation.
We will choose the normalization constant G0 in (3.6) later.

Using the vertical normal modes, this Green’s function is

G(x, z, z′) = G0

∞∑
n=1

eiκn|x|

2iκn�n

an(z)an(z
′), (3.8)

with

κn ≡
√

ω2 − f 2

cn

. (3.9)

The |x| in the exponential on the right-hand side of (3.8) ensures that radiation is
outgoing on both sides of the source at x = 0.

Using the WKB approximation we find that κn ≈ nπ/µh where

µ ≡ N̄√
ω2 − f 2

. (3.10)

We also define X ≡ πx/µh and choose the normalization G0 = iN̄
2
/µ. Thus the WKB

Green’s function is

GWKB(x, z, z′) =

∞∑
n=1

sin nZ sin nZ′

nπ
√

N(z)N(z′)
ein|X|. (3.11)

In (3.11) Z(z) is the WKB coordinate defined in (3.4). This expression agrees with
that of Robinson (1969) in the limit of uniform stratification (N(z) = N(z′) = 1 and
Z = πz/h).

Following Robinson, the series in (3.11) can be summed exactly and expressed
concisely using the function

�� (X, Z, Z′) ≡
sin

(
1
2
(|X| + Z + Z′)

)
sin

(
1
2
(|X| − Z − Z′)

)
sin

(
1
2
(|X| + Z − Z′)

)
sin

(
1
2
(|X| − Z + Z′)

) . (3.12)

The result is

GWKB(x, z, z′) =
1

4π

1√
NN′

[ln | �� | + iπH (−��)], (3.13)

where N′ ≡ N(z′). Figure 3 shows the imaginary part of GWKB(x − x ′, z, z′).
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3.3. The integral equation

Using GWKB(X, Z, Z′) we represent the solution of (2.7) as

ϕ(x, z) =

∫ b

0

γ (z′)GWKB(x, z, z′) dz′. (3.14)

On the knife, x = 0, ϕ = z and GWKB also simplifies. Thus (3.14) collapses to an integral
equation for the source density γ :

√
N(z)z =

1

2π

∫ b

0

γ (z′)√
N(z′)

ln

∣∣∣∣∣sin
(

1
2
(Z + Z′)

)
sin

(
1
2
(Z − Z′)

)
∣∣∣∣∣ dz′. (3.15)

One can show from (3.14) that

ϕix(0
±, z) = ± γ (z)

2µN2
, (3.16)

so that from (2.12) the conversion is given by

C = 1
2
ρ0U

2

√
1 − f 2

ω2
N̄

∫ b

0

zγ (z) dz. (3.17)

Thus the problem devolves to solving (3.15) for γ (z) and computing the integral in
(3.17).

4. Uniform stratification
In this section we consider the special case of a uniform stratification so that N =1

and Z = πz/h. Using the non-dimensional vertical coordinate Z, the integral equation
(3.15) becomes

Z =
1

2π

∫ B

0

Γ (Z′) ln

∣∣∣∣∣sin
(

1
2
(Z + Z′)

)
sin

(
1
2
(Z − Z′)

)
∣∣∣∣∣ dZ′, (4.1)

where B ≡ πb/h and Γ (Z′) ≡ γ (z′). Taking the derivative of (4.1) with respect to Z

we have

2 =

∫ B

0

Γ (Z′) sin Z′

cos Z − cos Z′
dZ′

π
. (4.2)

Changing variables in (4.2) to

ν ≡ 2
1 − cosZ

1 − cos B
− 1, (4.3)

and defining Υ (ν ′) = Γ (Z′), produces a standard form:

−2 =

∫ 1

−1

Υ (ν ′)

ν − ν ′
dν ′

π
. (4.4)

This is a special case of the airfoil equation – a Cauchy singular integral equation of
the first kind. The general solution of (4.4) (e.g. see Tuck 1980 or Carrier, Krook &

Pearson 1983) is Υ (ν) = (Λ + 2ν)/
√

1 − ν2 where Λ is a ‘constant of integration’.
To determine Λ we argue that Γ (Z) must be non-singular at Z = 0. This regularity
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condition implies that Υ (ν) must be non-singular at ν = −1 so that Λ = 2. Thus the
solution of (4.1) is

Υ (ν) = 2

√
1 + ν

1 − ν
, Γ (Z) = 2

√
1 − cos Z

cos Z − cos B
. (4.5)

4.1. The conversion

With Γ (z) to hand, the conversion can now be computed using (3.17):

C = ρ0U
2N

√
1 − f 2

ω2

h2

π2
K(B/π), (4.6)

where

K(B/π) ≡
∫ B

0

Z

√
1 − cos Z

cos Z − cos B
dZ. (4.7)

For numerical and asymptotic evaluation of the integral it is convenient to use the
variable

τ ≡ tan(B/2) = tan(πb/2h). (4.8)

Making this change of variables puts the integral (4.7) in the form

K(B/π) = 4
√

1 + τ 2

∫ τ

0

t tan−1 t√
τ 2 − t2

dt

1 + t2
, (4.9)

and then asymptotic methods give the approximations:

K(B/π) ≈
{

πτ 2/
√

1 + τ 2 if τ 	 1

2π
√

1 + τ 2 ln τ/τ if τ  1.
(4.10)

Further reductions of the small-τ approximation in (4.10) give the conversion rate for
a knife-edge immersed in an ocean of infinite depth as

C ≈ 1
4
πb2ρ0U

2N

√
1 − f 2

ω2
. (4.11)

Equation (4.11) confirms the numerical speculation of St. Laurent et al. (2003) that
in the limit h → ∞ the conversion due to a knife-edge ridge is precisely twice that
of Bell’s (1975a) witch with the same height, b. With f =0, (4.11) is also a special
case of Hurley’s (1997) formula for the energy radiated by a vibrating ellipse in an
unbounded stratified fluid. Note that the knife-edge radiates energy into the whole
upper half-plane and hence its power output is twice the single-quadrant result of
Hurley.

It is convenient to use the small-b/h limit in (4.11) to rewrite the conversion in
(4.6) as

C = 1
4
πb2ρ0U

2N

√
1 − f 2

ω2
M(B/π), (4.12)

where

M(B/π) ≡ 4K(B/π)

πB2
. (4.13)
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Figure 4. The solid curve is M defined by (4.7) and (4.13), as a function of b/h =B/π;
M(b/h) appears in (4.12) as the ‘enhancement factor’ by which C exceeds the b/h 	 1 limit
in (4.11). St. Laurent et al. (2003) obtain a similar curve using a different method. The dotted
and dashed curves are the approximations based on (4.10).

The function M(B/π), along with approximations based on (4.10), is shown in figure 4.
Although M → ∞ as b/h = B/π → 1, the initial rise of M is not so dramatic; e.g. it is
not until b/h ≈ 0.92 that M = 2.

4.2. Projection onto the vertical modes

Now we turn to the modal projection. Substituting (3.11) (with N(z) = N(z′) = 1)
into the representation (3.14) gives

ϕ(X, Z) =
h

π

∞∑
n=1

n−1PPn sin nZ ein|X|. (4.14)

In (4.14)

PPn ≡ Pn−1(cos B) − Pn(cos B), (4.15)

where Pn is the nth Legendre polynomial. The key result used to obtain (4.14) is

2

π

∫ B

0

sin nZ

√
1 − cos Z

cos Z − cos B
dZ = Pn−1(cos B) − Pn(cosB). (4.16)

To visualize the solution we use the total buoyancy field, b∗ ≡ N 2z + b(x, z, t),
obtained from (4.14)†. After some working we find

b∗(x, z, t) =
N 2h

π

[
Z + αRe

(
e−iωt

∞∑
n=1

PPn sin nZ sgn(X)ein|X|
)]

, (4.17)

where

α ≡ πU

Nh

√
1 − f 2

ω2
. (4.18)

† Notice that b denotes both the buoyancy perturbation – as in (2.2) – and the height of the
ridge. The context will clearly indicate which is which.
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Figure 5. Fraction of the converted energy in the first n modes with n = 1, 2, . . . , 9 as a
function of b/h = B/π. The even values F2 to F8 are shown as dotted curves. The function
Fn(B/π) is defined in (4.21).

Figure 1 shows the solution (4.17) at t = 0 with α = 0.1. In this illustration the sum was
truncated at n= 200 and the series was further filtered to remove Gibbs oscillations
which would otherwise be prominent in the tidal beams emanating from the ridge
crest.

We can also use the series in (4.14) to calculate the modal conversion via

C = 2

∫ h

0

J(x > 0, z) · x̂ dz (4.19)

where J is the flux in (2.10) and the factor of 2 on the right-hand side accounts for
the energy radiated to x < 0. This approach, which amounts to computing the flux of
energy through EF and CD in figure 2, provides the following alternative expression
for the integral K defined in (4.7):

K(B/π) =
π

2

∞∑
n=1

n−1PP 2
n . (4.20)

From (4.20) we can obtain the fraction of the converted energy contained in the first
n modes:

Fn(B/π) =

n∑
k=1

k−1PP 2
k

/ ∞∑
k=1

k−1PP 2
k . (4.21)

Figure 5 shows F1(B/π) to F9(B/π). At about τ = 1.4 the curve F2 kisses F1 which
indicates that there is no energy in mode 2 for a ridge with b/h ≈ 0.6. In general Fn

kisses Fn+1 at n points.
St. Laurent et al. (2003) present a numerical result for the fraction of energy in

mode 1, F1. These authors note that at b/h = 0.75 mode 1 carries 75% of the total
flux, and 75% is close to the fraction observed at Hawaii (Egbert & Ray 2000, 2001;
Ray & Mitchum 1996).

4.3. The validity of linearization and tidal beams

With the reconstructed solution in (4.17) we can make an a posteriori assessment of
the linearization approximation. In order that the displacement of the isopycnals be
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small, we certainly require that α ≡ πU
√

1 − (f/ω)2/(Nh) be much less than one. A
rough numerical estimate taking U = 0.01m s−1, N = 1 cycles per hour (c.p.h.), and
h = 5000 m shows that α is less than 0.004. (In figure 1 we use the unrealistically large
value α = 0.1 to make the isopycnal displacements visible.)

The condition α 	 1 ensures that linearization is valid over most of the domain.
But α 	 1 does not ensure that displacements are small within the singular beams
which originate from the top of the barrier in figure 1. Robinson (1969) remarks that
the buoyancy perturbation diverges like |ξ |−1/2, where ξ is the normal distance from
the beam. In other words, the perturbation density becomes infinite within the beams.
This singularity indicates a failure of linear non-dissipative theory, albeit in a small
part of the domain.

The singularity is not an artefact of the knife-edge geometry: Balmforth et al. (2002)
document the formation of singular tidal beams by a smooth topographic sinusoid
with critical slope. That is, the singularity is a consequence of supercritical slope rather
than the knife-edge. Just as in the much-studied problem of internal wave reflection
by a sloping boundary, the singularity indicates that mixing and mode conversion
might occur.

Our main focus is the energy conversion and it is our hope that the results such as
(4.6) are reliable even though linear theory fails in part of the domain. One supportive
argument is the analysis of Robinson (1969) which shows that the beam singularity
is not a source of mass, momentum or energy. A second point is that Balmforth
et al. (2002) have computed the conversion produced by a topographic sinusoid as a
function of the amplitude of the sinusoid. The conversion increases with topographic
amplitude until the topographic slope becomes critical, and the wave-field singular.
Nevertheless there is no evidence of this singularity in the conversion rate, which is
always a smooth function of the topographic amplitude.

5. Non-uniform stratification
A more realistic model is obtained by taking the buoyancy frequency to be non-

uniform. The integral equation (3.15) can be rewritten using Z in (3.4) as the vertical
coordinate. In this form (3.15) becomes

L(Z) =
1

2π

∫ B

0

Γ (Z′) ln

∣∣∣∣∣sin
(

1
2
(Z + Z′)

)
sin

(
1
2
(Z − Z′)

)
∣∣∣∣∣ dZ′, (5.1)

where now

B ≡ π

h

∫ b

0

N(z′) dz′ (5.2)

is the ridge height in terms of the WKB coordinate. Also in (5.1),

Γ (Z) ≡ γ (z)/N3/2(z), L(Z) ≡ πz

h

√
N. (5.3)

Once we have solved (5.1) for Γ (Z) the conversion is obtained from (3.17) as

C = ρ0U
2N̄

√
1 − f 2

ω2

h2

π2
K(B/π), (5.4)

where now

K(B/π) = 1
2

∫ B

0

L(Z)Γ (Z) dZ. (5.5)
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(Notice that the WKB coordinate is normalized so that Z = π is the ocean surface;
we anticipate that K(B/π) → ∞ as B/π → 1.)

The integral equation (5.1) was solved numerically by discretizing the WKB
coordinate, Z, and using the method reviewed by Tuck (1980). Both midpoint and
trapezoidal discretizations of the integral gave the same answer to four significant
figures. The accuracy of the conversion rate was also checked by solving the constant-
N case numerically and comparing the result to the exact solution in (4.5). With 200
gridpoints the conversion obtained numerically from (5.5) agreed with (4.7) to three
significant figures.

5.1. A model stratification

We choose a simple model for the buoyancy frequency, consisting of an exponentially
varying portion and a constant term. The form of N is then

N = NB + NC

(
ez/d − 1

)
. (5.6)

The average buoyancy frequency and the WKB coordinate introduced in (3.4) are

N̄ = NB + NC

[
eβ − 1

β
− 1

]
, (5.7)

where β ≡ h/d , and

Z = π
z + (NC/NB)

(
dez/d − d − z

)
h + (NC/NB)(deβ − d − h)

(5.8)

respectively. The relation (5.8) cannot be inverted for z as a function of Z and
consequently L(Z) in (5.3) must be computed numerically on the grid points. The
integral K in (5.5) is a function of b/h, β and � , where � ≡ N̄/NB is the ratio of the
average buoyancy frequency to the buoyancy frequency at the bottom. Thus, using
the model stratification in (5.6), the conversion is

C = ρ0U
2N̄

√
1 − f 2

ω2

h2

π2
K(b/h, β, � ). (5.9)

Notice that the model stratification becomes uniform if either β = 0 or � = 1; in
these two cases K(b/h, β, � ) in (5.9) reduces to K(b/h) in (4.6) and (4.7). Thus we
recover as a special case the conversion with uniform stratification.

We estimated the parameters NB , NC and d in (5.6) using the World Ocean Database
2001 (Conkright et al. 2001). All the casts in the WOD reaching below 5000 m within
a 20◦ × 20◦ square centred on Hawaii were assembled; there are 94 such density
profiles. Temperature and salinity were interpolated at 2 m intervals between 50 m
and 5000 m and the buoyancy frequency was computed for each of the 94 casts. A
relatively smooth N2-profile was produced by averaging the 94 casts. We defined a
penalty function by integrating the square of the difference between the data N 2 and
the model N 2 in (5.6) over the range of depths 500 m to 5000 m. This integral was
also weighted using the error in the mean. The three parameters NB , NC and β = h/d

were then found using a nonlinear optimization procedure to minimize the penalty
function. The resulting values of the model parameters are given in the second row
of table 1.

To make a second comparison, we used station ALOHA at 22◦45.0′N, 158◦00.0′W
from the Hawaii Ocean Time Series (HOTS 2002). A single cast from cruise 111 of
HOTS between 1 February and 4 February 2000 was chosen. The values from the
nonlinear fitting procedure described above are shown in third row of table 1. (The
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Data h (m) NB (c.p.h.) NC (c.p.h.) β N̄ (c.p.h.) c1 (m s−1) b (m) K C (GW)

Constant N 5000 – – – 1.00 2.78 4500 11.7 9.6
WOD 5000 0.35 0.0115 5.85 1.02 2.68 4500 19.7 16.6
HOTS 4806 0.50 0.0010 8.74 1.22 2.99 4325 17.9 16.6

Table 1. Parameter values for the constant-N model, WOD data and HOTS ALOHA data.
We estimate the conversion by assuming the ridge to be 2000 km long; U = 0.01m s−1, f = 5 ×
10−5 s−1, ω = 2.8 × f and ρ0 = 1000 kg m−3. The seventh column gives c1, the phase speed of
the first baroclinic mode obtained by solving the eigenproblem (3.1). As an assessment of the
WKB approximation we note the the WKB estimate, c1 ≈ hN̄/π, has an error of 2% for WOD
and 8% for HOTS.

fitting no longer weights the integrand since with a single profile there is no estimate
of the error in N 2.)

The data and model N2 profiles are shown in figure 6(a). The fit is satisfactory
below 500 m. Trying to fit above 500 m is difficult because of contamination by the
seasonal cycle and mixed-layer effects. Shown in figure 6(b) is the integral K as a
function of b/h using the stratification parameters in rows 2 and 3 of table 1: K

increases steeply over the range 0.75 <b/h< 0.95 so that the conversion increases by
a factor of 10 if b/h increases from 0.75 to 0.95.

Figure 6(c) shows K as a function of β and � ≡ N̄/NB , for a fixed value of
b/h = 0.9. These two parameters are sufficient to characterize the model profile in
(5.6) if N̄ is also known. The locations of the WOD and HOTS data are shown by ×
and + respectively.

Figure 7 shows the fraction of converted energy in the first 9 modes for the HOTS
buoyancy profile over a range of ridge heights. Figure 7(a) has b/h as the abscissa
while figure 7(b) has B/π. Using B/π in figure 7(b) ensures that the structure of the
Fn is very similar to that of figure 5.

5.2. Sensitivity of conversion rate to the buoyancy frequency

The preceding results show that as b/h increases the conversion rate C rises rapidly,
e.g. figure 6(b). This rapid increase occurs because the ridge penetrates the heavily
stratified upper ocean, and tidal conversion is more efficient if N is large. To quantify
this important property of non-uniform stratification we develop an approximate
solution of the integral equation (5.1) which makes the dependence of C on the
parameters of the model stratification transparent.

The idea is to approximate the left-hand side of (5.1) by

L(Z) ≈ ZL(B)

B
(5.10)

(see figure 8a) so that our earlier solution of (4.1) gives

Γ (Z) ≈ 2
L(B)

B

√
1 − cos Z

cos Z − cos B
. (5.11)

Substituting the approximations (5.10) and (5.11) into (5.4) and (5.5), we eventually
find that the conversion is

C ≈ π

4
ρ0U

2

√
1 − f 2

ω2
N (b)b2M(B/π). (5.12)
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Figure 6. (a) Observed N2(z) profiles: grey lines are N2 means (and standard deviations for
WOD – this is the curve with smaller variations); bold line is the model in (5.6) using the
parameters in table 1. The HOTS profile is offset by 5 c.p.h. (b) K as a function of b/h using
the stratification parameters in the second and third rows of table 1. (c) The solid curves
show K as a function of β ≡ h/d and � ≡ N̄/NB , with b/h = 0.9. The dashed curves show the
approximation (5.12); at b/h = 0.8 the approximation is an overestimate by about 20% (see
figure 8b).

Here, M(B/π) is the function defined in (4.7) and (4.13), and shown in figure 4. It is
interesting that both the physical ridge height, b, and the WKB height, B in (5.2),
appear in (5.12).
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Figure 7. Fraction of the converted energy in the first n modes for the HOTS profile.
(Compare with figure 5, which shows Fn for uniform stratification.)
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Figure 8. (a) A comparison using the HOTS profile of the approximation (5.10) (the dashed
line) with the exact L(Z) (the solid curve). (b) The error defined in (5.13) as a function of
b/h for � ≡ N̄/NB =2, 2.5 and 3, and β ≡ h/d = 5, 6, . . . , 10. The curves corresponding to
different values of � are vertically offset by 0.5. The maximum error of about 20% occurs at
b/h ≈ 0.8.

Figure 8(b) compares the approximation (5.12) with a numerical solution of (5.1)
using

Error ≡ approximate C
numerical C − 1. (5.13)

The approximation overestimates C by up to 20% when b/h ≈ 0.8. A further
assessment of (5.12) is the comparison between the solid (numerical) and dashed
(approximation) curves in figure 6(c) (this is a worst case because b/h = 0.8).

6. Conclusion
We conclude by using (5.4) to make a numerical estimate using values representative

of the Hawaiian ridge:

(b, h) = (4500, 5000) m, f = 5 × 10−5 s−1. (6.1)

For the tidal velocity away from the ridge we take U =0.01 m s−1. With the WOD
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data in table 1, N̄ = 1.02 c.p.h. and so the dimensional prefactor in (5.4) is then

C� ≡ ρ0U
2N̄

√
1 − f 2

ω2

h2

π2
,

≈ 4.2 × 102 W m−1. (6.2)

With the WOD profile the numerical solution of (5.4) and (5.5) gives K = 19.7 so that
if we take the length of the ridge to be L = 2000 km then

CWOD ≈ C� × K × L = 16.6 GW. (6.3)

The HOTS profile has N̄ = 1.22 so that C� is larger by 20%. But because of the
details in K , the final result for CHOTS is very close to CWOD (see table 1).

It is interesting to compare (6.3) with a value obtained by assuming a uniformly
stratified ocean with N = 1 c.p.h. (close to the observed N̄ for WOD). With b/h = 0.9,
we have for a uniformly stratified ocean K ≈ 11.72 and so C = 4.9 GW. This is smaller
than (6.3) because the estimate has taken no account of the stronger stratification at
the ridge.

St. Laurent et al. (2003) use the same knife-edge model, but with a uniform buoyancy
frequency N = 2.8 c.p.h. Additionally they take L =2000 km, U = 0.014 m s−1, and
b/h = 0.75; the resulting estimate is C ≈ 19 GW. The differences between our values
for L, U , and N and those of St. Laurent et al. (2003) give some indication of
the subjective choices which must be made in applying the knife-edge model to the
complicated three-dimensional geometry of the Hawaiian Ridge. The jagged profile
of the Hawaiian Ridge is a major source of uncertainty in these estimates. This is a
strong motivation for studying the three-dimensional problem of a knife-edge with
variable height.

It is also of interest to compare (6.3) with observational and numerical estimates
of C. Using an inverse model constrained with TOPEX data, Egbert & Ray (2000,
2001) estimate that the total M2 conversion at Hawaii is 20 GW. Simulations using
the Princeton Ocean model predict that the tidal conversion occurring at Hawaii is
9.7GW (Merrifield, Holloway & Shaun Johnston 2001; Merrifield & Holloway 2002).
Ray & Mitchum (1996) estimated 15 GW of conversion into the first baroclinic mode.
To put these numbers into global perspective, Munk & Wunsch (1998) estimate that
the total amount of energy radiated into the internal gravity wave field by tidal
interaction with with deep-ocean ridges and seamounts is 900 GW.

The knife-edge ridge is the simplest tractable model of internal tide generation
by strongly supercritical topography. Using this idealization we have found two
mechanisms which increase the conversion by orders of magnitude above earlier
results obtained using models with uniform stratification and infinite depth. First, as
the gap width h−b is reduced the conversion becomes infinite with C ∝ ln[(h−b)/h]
(see (4.10) with τ  1). The second factor which greatly effects C is the structure of the
buoyancy frequency, N (z). The factor N (b) in (5.12) indicates the strong dependence
of the conversion rate on stratification if the ridge penetrates the thermocline.
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